by    in About Ranker, Opinion Graph, Pop Culture, Rankings

Ranker’s Rankings API Now in Beta

Increasingly, people are looking for specific answers to questions as opposed to webpages that happen to match the text they type into a search engine.  For example, if you search for the capital of France or the birthdate of Leonardo Da Vinci, you get a specific answer.  However, the questions that people ask are increasingly about opinions, not facts, as people are understandably more interested in what the best movie of 2013 was, as opposed to who the producer for Star Trek: Into Darkness was.

Enter Ranker’s Rankings API, which is currently now in beta, as we’d love the input of potential users’ of our API to help improve it.  Our API returns aggregated opinions about specific movies, people, tv shows, places, etc.  As an input, we can take a Wikipedia, Freebase, or Ranker ID.  For example, below is a request for information about Tom Cruise, using his Ranker ID from his Ranker page (contact us if you want to use other IDs to access).
http://api.ranker.com/rankings/?ids=2257588&type=RANKER

In the response to this request, you’ll get a set of Rankings for the requested object, including a set of list names (e.g. “listName”:”The Greatest 80s Teen Stars”), list urls (e.g. “listUrl”:”http://www.ranker.com/crowdranked-list/45-greatest-80_s-teen-stars” – note that the domain, www.ranker.com, is implied), item names (e.g. “itemName”:”Tom Cruise”) position of the item on this list (e.g. “position”:21), number of items on the list (e.g. “numItemsOnList”:70), the number of people who have voted on this list (e.g. “numVoters”:1149), the number of positive votes for this item (e.g. “numUpVotes”:245) vs. the number of negative votes (e.g. “numDownVotes”:169), and the Ranker list id (e.g. “listId”:584305).  Note that results are cached so they may not match the current page exactly.

Here is a snipped of the response for Tom Cruise.

[ { “itemName” : “Tom Cruise”,
“listId” : 346881,
“listName” : “The Greatest Film Actors & Actresses of All Time”,
“listUrl” : “http://www.ranker.com/crowdranked-list/the-greatest-film-actors-and-actresses-of-all-time”,
“numDownVotes” : 306,
“numItemsOnList” : 524,
“numUpVotes” : 285,
“numVoters” : 5305,
“position” : 85
},
{ “itemName” : “Tom Cruise”,
“listId” : 542455,
“listName” : “The Hottest Male Celebrities”,
“listUrl” : “http://www.ranker.com/crowdranked-list/hottest-male-celebrities”,
“numDownVotes” : 175,
“numItemsOnList” : 171,
“numUpVotes” : 86,
“numVoters” : 1937,
“position” : 63
},
{ “itemName” : “Tom Cruise”,
“listId” : 679173,
“listName” : “The Best Actors in Film History”,
“listUrl” : “http://www.ranker.com/crowdranked-list/best-actors”,
“numDownVotes” : 151,
“numItemsOnList” : 272,
“numUpVotes” : 124,
“numVoters” : 1507,
“position” : 102
}

…CLIPPED….
]

What can you do with this API?  Consider this page about Tom Cruise from Google’s Knowledge Graph.  It tells you his children, his spouse(s), and his movies.  But our API will tell you that he is one of the hottest male celebrities, an annoying A-List actor, an action star, a short actor, and an 80s teen star.  His name comes up in discussions of great actors, but he tends to get more downvotes than upvotes on such lists, and even shows up on lists of “overrated” actors.

We can provide this information, not just about actors, but also about politicians, books, places, movies, tv shows, bands, athletes, colleges, brands, food, beer, and more.  We will tend to have more information about entertainment related categories, for now, but as the domains of our lists grow, so too will the breadth of opinion related information available from our API.

Our API is free and no registration is required, though we would request that you provide links and attributions to the Ranker lists that provide this data.  We likely will add some free registration at some point.  There are currently no formal rate limits, though there are obviously practical limits so please contact us if you plan to use the API heavily as we may need to make changes to accommodate such usage.  Please do let me know (ravi a t ranker) your experiences with our API and any suggestions for improvements as we are definitely looking to improve upon our beta offering.

– Ravi Iyer

by    in Rankings

Rankings are the Future of Mobile Search

Did you know that Ranker is one of the top 100 web destinations for mobile per Quantcast, ahead of household names like The Onion and People magazine?  We are ranked #520 in the non-mobile world.  Why do we do better with mobile users as opposed to people using a desktop computer?  I’ve made this argument for awhile, but I’m hardly an authority, so I was heartened to see Google making a similar argument.

This embrace of mobile computing impacts search behavior in a number of important ways.

First, it makes the process of refining search queries much more tiresome. …While refining queries is never a great user experience, on a mobile device (and particularly on a mobile phone) it is especially onerous.  This has provided the search engines with a compelling incentive to ensure that the right search results are delivered to users on the first go, freeing them of laborious refinements.

Second, the process of navigating to web pages (is) a royal pain on a hand-held mobile device.

This situation provides a compelling incentive for the search engines to circumvent additional web page visits altogether, and instead present answers to queries – especially straightforward informational queries – directly in the search results.  While many in the search marketing field have suggested that the search engines have increasingly introduced direct answers in the search results to rob publishers of clicks, there’s more than a trivial case to be made that this is in the best interest of mobile users.  Is it really a good thing to compel an iPhone user to browse to a web page – which may or may not be optimized for mobile – and wait for it to load in order to learn the height of the Eiffel Tower?

As a result, if you ask your mobile phone for the height of a famous building (Taipei 101 in the below case), it doesn’t direct you to a web page.  Instead it answers the question itself.

That’s great for a question that has a single answer, but an increasing number of searches are not for objective facts with a single answer, but rather for subjective opinions where a ranked list is the best result.  Consider the below chart showing the increase in searches for the term “best”.  A similar pattern can be found for most any adjective.

So if consumers are increasingly doing searches on mobile phones, requiring a concise list of potential answers to questions with more than one answer, they naturally are going to end up at sites which have ranked lists…like Ranker. As such, a lot of Ranker’s future growth is likely to parallel the growth of mobile and the growth of searches for opinion based questions.

– Ravi Iyer

Ranker Uses Big Data to Rank the World’s 25 Best Film Schools

NYU, USC, UCLA, Yale, Julliard, Columbia, and Harvard top the Rankings.

Does USC or NYU have a better film school?  “Big data” can provide an answer to this question by linking data about movies and the actors, directors, and producers who have worked on specific movies, to data about universities and the graduates of those universities.  As such, one can use semantic data from sources like Freebase, DBPedia, and IMDB to figure out which schools have produced the most working graduates.  However, what if you cared about the quality of the movies they worked on rather than just the quantity?  Educating a student who went on to work on The Godfather must certainly be worth more than producing a student who received a credit on Gigli.

Leveraging opinion data from Ranker’s Best Movies of All-Time list in addition to widely available semantic data, Ranker recently produced a ranked list of the world’s 25 best film schools, based on credits on movies within the top 500 movies of all-time.  USC produces the most film credits by graduates overall, but when film quality is taken into account, NYU (208 credits) actually produces more credits among the top 500 movies of all-time, compared to USC (186 credits).  UCLA, Yale, Julliard, Columbia, and Harvard take places 3 through 7 on the Ranker’s list.  Several professional schools that focus on the arts also place in the top 25 (e.g. London’s Royal Academy of Dramatic Art) as well as some well-located high schools (New York’s Fiorello H. Laguardia High School & Beverly Hills High School).

The World’s Top 25 Film Schools

  1. New York University (208 credits)
  2. University of Southern California (186 credits)
  3. University of California – Los Angeles (165 credits)
  4. Yale University (110 credits)
  5. Julliard School (106 credits)
  6. Columbia University (100 credits)
  7. Harvard University (90 credits)
  8. Royal Academy of Dramatic Art (86 credits)
  9. Fiorello H. Laguardia High School of Music & Art (64 credits)
  10. American Academy of Dramatic Arts (51 credits)
  11. London Academy of Music and Dramatic Art (51 credits)
  12. Stanford University (50 credits)
  13. HB Studio (49 credits)
  14. Northwestern University (47 credits)
  15. The Actors Studio (44 credits)
  16. Brown University (43 credits)
  17. University of Texas – Austin (40 credits)
  18. Central School of Speech and Drama (39 credits)
  19. Cornell University (39 credits)
  20. Guildhall School of Music and Drama (38 credits)
  21. University of California – Berkeley (38 credits)
  22. California Institute of the Arts (38 credits)
  23. University of Michigan (37 credits)
  24. Beverly Hills High School (36 credits)
  25. Boston University (35 credits)

“Clearly, there is a huge effect of geography, as prominent New York and Los Angeles based high schools appear to produce more graduates who work on quality films compared to many colleges and universities,“ says Ravi Iyer, Ranker’s Principal Data Scientist, a graduate of the University of Southern California.

Ranker is able to combine factual semantic data with an opinion layer because Ranker is powered by a Virtuoso triple store with over 700 million triples of information that are processed into an entertaining list format for users on Ranker’s consumer facing website, Ranker.com.  Each month, over 7 million unique users interact with this data – ranking, listing and voting on various objects – effectively adding a layer of opinion data on top of the factual data from Ranker’s triple store. The result is a continually growing opinion graph that connects factual and opinion data.  As of January 2013, Ranker’s opinion graph included over 30,000 nodes with over 5 million edges connecting these nodes.

– Ravi Iyer

by    in Data Science, Google Knowledge Graph

How Ranker leverages Google’s Knowledge Graph

Google recently held their I/O conference and one of the talks was given by Freebase’s Shawn Simister, who was once Freebase’s biggest fan, and has since gone on to work at Google, which acquired Freebase a few years ago.  What is Freebase?  It’s the structured semantic data that powers Google’s knowledge graph and Ranker, along with many other organizations featured in this talk (Ranker is mentioned around the 8:45 mark).  This talk gives organizations that may not be familiar with Freebase an overview of how they can leverage the Freebase’s semantic data.

How does Ranker use the knowledge graph?  Freebase’s semantic data powers much of what we do at Ranker and the below graph illustrates how we relate to the semantic web.

How Ranker Relates to the Semantic Web

We leverage the data from the semantic web, often via Freebase, to create content in list format (e.g. The Best Beatles Songs), which our users then vote on and re-rank.  This creates an opinion data layer that is easily exportable to any other entity (e.g. The New York Times or Netflix) that is connected to the larger semantic web.  Our hope is that just as people in the presentation are beginning to create mashups of factual data, eventually people will also want to merge in opinion data, and we hope to have the best semantic opinion dataset out there when that happens.  The more people that connect their data to the semantic web, the more lists we can create, and the more potential consumers exist for our opinion data.  As such, we’d encourage you to check out Shawn’s presentation and hopefully you’ll find Freebase as useful as we do.

– Ravi Iyer

 

by    in Data Science, Google Knowledge Graph

The Knowledge Graph is about more than facts

Today, Google announced the introduction of the “knowledge graph”, which introduces facts into Google searches.  So now, when you search for an object that Google understands, search results reflect Google’s actual understanding, leveraging what they know about each object.  Here is a video with more detail.

At Ranker, we know things about specific objects too, as most every item in the Ranker system maps to a Freebase object, which is a company (MetaWeb) that Google bought in order to provide these features.  We know a lot of the same information that Google knows, since we leverage the Freebase dataset.  For example, on our Godfather page, we present facts such as who directed the movie, when it was released, and what it’s rating was.  However, we also present other facts that people traditionally do not think of as part of the knowledge graph, but are actually just as essential to understanding the world.  We tell you that it’s one of the best movies of all time.  We also tell you that people who like the Godfather also tend to like Goodfellas, the Shawshank Redemption, and Scarlett Johansson.

Is this “knowledge”?  These aren’t “hard” facts, but it is a fact that people generally think of The Godfather as a good movie and Gilgi as a bad movie.  Moreover, knowledge about people’s opinions is essential for understanding the world in the way that the “Star Trek computer” that is referred to in Google’s blog post understands the world.  Could you pick a college based on factual information about enrollment and majors offered?  Could you hold an intelligent conversation about Harvard without knowing it’s place in the universe of universities?  Could you choose a neighborhood to live in based solely on statistics about the neighborhood, or would understanding what neighborhoods people like you also tend to like help you make the right choice?  If the broader mission of a search engine is to help you answer questions, then information about people’s opinions about colleges and neighborhoods is essential in these cases.  The knowledge graph isn’t just about facts, it’s about opinions as well.  Much of the knowledge you use in everyday reasoning concerns opinions, and if the internet is to get smarter, it needs this knowledge just as much as it needs to know factual information.

My guess is that Google gets this.  In 2004, searches for the word “best” were roughly equal to searches for words like car, computer or software, but people are increasingly searching for opinions online.  My uneducated guess is that Google bought Zagat, in part, for this reason.  Bing, Wolphram Alpha, Apple, and Facebook are all working on similar semantic search solutions, and as long as people continue to dream about the holodeck computer that can intelligently answer requests like “book me a hotel room in Toronto” or “buy my niece a present for her birthday”, data about opinions will be a part of the future of the knowledge graph.

– Ravi Iyer